Home > Publikationen > 2015 > 25857276

Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals.

Schild M, Ruhs A, Beiter T, Zügel M, Hudemann J, Reimer A, Krumholz-Wagner I, Wagner C, Keller J, Eder K, Krüger K, Krüger M, Braun T, Nieß A, Steinacker J, Mooren FC
Journal of proteomics 2015; 1222015Jun3: 119-32


Morphological and metabolic adaptations of the human skeletal muscle to exercise are crucial to improve performance and prevent chronic diseases and metabolic disorders. In this study we investigated human skeletal muscle protein composition in endurance trained (ET) versus untrained individuals (UT) and its modulation by an acute bout of endurance exercise. Participants were recruited based on their VO2max and subjected to a bicycle exercise test. M. vastus lateralis biopsies were taken before and three hours after exercise. Muscle lysates were analyzed using off-gel LC-MS/MS. Relative protein abundances were compared between ET and UT at rest and after exercise. Comparing UT and ET, we identified 92 significantly changed proteins under resting conditions. Specifically, fiber-type-specific and proteins of the oxidative phosphorylation and tricarboxylic acid cycle were increased in ET. In response to acute exercise, 71 proteins in ET and 44 in UT were altered. Here, a decrease of proteins involved in energy metabolism accompanied with alterations of heat shock and proteasomal proteins could be observed. In summary, long-term endurance training increased the basal level of structural and mitochondrial proteins in skeletal muscle. In contrast, acute exercise resulted in a depletion of proteins related to substrate utilization, especially in trained athletes.

Zugehörigkeit: Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany.

Aritkel auf PubMed

Logo: Paul-Ehrlich-Institut Logo: Georg Speyer Haus Logo: Goethe Universität Logo: Max-Planck-Institut Logo: DRK Blutspendedienst