Long noncoding RNAs in cardiovascular diseases.

Uchida S, Dimmeler S
Circulation research 2015; 11642015Feb13: 737-50

Abstract

In recent year, increasing evidence suggests that noncoding RNAs play important roles in the regulation of tissue homeostasis and pathophysiological conditions. Besides small noncoding RNAs (eg, microRNAs), >200-nucleotide long transcripts, namely long noncoding RNAs (lncRNAs), can interfere with gene expressions and signaling pathways at various stages. In the cardiovascular system, studies have detected and characterized the expression of lncRNAs under normal physiological condition and in disease states. Several lncRNAs are regulated during acute myocardial infarction (eg, Novlnc6) and heart failure (eg, Mhrt), whereas others control hypertrophy, mitochondrial function and apoptosis of cardiomyocytes. In the vascular system, the endothelial-expressed lncRNAs (eg, MALAT1 and Tie-1-AS) can regulate vessel growth and function, whereas the smooth-muscle-expressed lncRNA smooth muscle and endothelial cell-enriched migration/differentiation-associated long noncoding RNA was recently shown to control the contractile phenotype of smooth muscle cells. This review article summarizes the data on lncRNA expressions in mouse and human and highlights identified cardiovascular lncRNAs that might play a role in cardiovascular diseases. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights how lncRNAs interfere with cardiovascular diseases.

Affiliation: From the Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany (S.U., S.D.); and German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt, Germany (S.U., S.D.).

View Article on PubMed

Logo: Paul-Ehrlich-Institut Logo: Georg Speyer Haus Logo: Goethe Universit├Ąt Logo: Max-Planck-Institut Logo: DRK Blutspendedienst